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Geodetic parameters describing the earth's gravity field and
the positions of satellite-tracking stations in a geocentric reference
frame have been computed. These parameters were estimated by
means of a combination of four different types of data: routine and
simultaneous satellite observations, observations of deep-space
probes, and measurements of terrestrial gravity. This combina-

tion solution gives better parameters than any subset of data types.

In the dynamic solution, precision-reduced Baker-Nunn obser-
vations and laser range data of 21 satellites were used. Data from
optical cameras, in addition to those from 19 Baker-Nunn stations,
were employed in the geometrical solution. Data from the tracking
of deep-space probes were used in the form of relative station
longitudes and distances to the earth's axis of rotation. The
surface-gravity data in the form of mean anomalies for 300-n mi
squares were provided by Kaula. The adopted solution from each
iteration was a combination solution and was chosen to improve
the residuals of all types of data. In addition to these four data

sets, astrogeodetic data, surface triangulation, and some recently
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acquired surface-gravity data not included in the set used for the
combinations were employed for an independent test of the solu-
tion. The total gravity field is represented by spherical harmonic
coefficients complete to degree and order 16, plus a number of
higher degree terms. The half-wavelength resolution of this global
solution subtends about 11° at the earth's center. The accuracy of
the global field has been estimated as 3 m in geoid height, or

8. 7 mgal. Coordinates of many of the stations are determined

with an accuracy of 10 m or better.

1. INTRODUCTION

During 1966, the Smithsonian Astrophysical Observatory (SAO) published
numerical parameters for the earth's gravity field and the coordinates of the
satellite-tracking stations [Gaposchkin, 1967; Kdhnlein, 1967a; Veis, 1967&, b;
Whipple, 1967; Lundquist and Veis, 1966]. In 1967, a series of papers by

Gaposchkin, K8hnlein, Kozai, and Veis [Lundquist, 1967] produced several
refinements of the 1966 solution. Tests of the solution presented here indi-

cate that these new results are superior to any set of geodetic parameters.

The geodetic parameters are estimated from a combined solution of the
results obtained by the geometric and dynamic methods. In addition, the
combination solution includes station-position information determined by the
Jet Propulsion Laboratory (JPL) for its Deep Space Tracking Network (DSN)
and surface-gravity anomalies computed by Kaula [19662a]. The final solution
yields harmonic coefficients in the potential expansion complete to degree and
order 16, plus 14 pairs of higher degree coefficients and the coordinates for
39 stations. This solution is compared with recently available surface-

gravity data and astrogeodetic data.



2. DATA COLLECTION, REDUCTION, AND REFERENCE SYSTEM

Data Collection. Laser tracking systems have been developed in the

last 4 years and coordinated observing periods established in 1967, 1968,

and 1969. The best data include significant amounts of laser data.

In addition to data from the Baker-Nunn and laser networks, data

collected by other agencies have also been used (see Figure 1}):

1. Laser data from stations 7815, 7816, and 7818 were made available
by the Centre National d'Etudes Spatiales (CNES), France.

2. Laser data from station 7050 were made available by the Goddard
Space Flight Center (GSF C).

3. Optical data were obtained from the following European stations:
8015 and 8019 (Observatoire de Paris); 9065 (Technical University of Delft);
9066 (Astronomical Institute, Berne); 9074 and 9077 (USSR Astronomical
Council); and 9080 (Royal Radar Establishment, Malvern).

4. Optical data from the MOTS cameras 1021, 1030, 1042, 7036, 7037,
7039, 7040, 7075, and 7076 were supplied by GSFC.

Data Reduction and Accuracies. The recuction of the optical data was

carried out with all terms in precession and nutation necessary to ensure that
the maximum neglected effect is less than 0.5 m. Annual aberration is added
and diurnal aberration must be applied to the simultaneous observations.
Parallactic refraction was applied by the use of mean nighttime temperature
and pressure taken at each station to establish the refraction coefficient

(G. Veis, private communication, 1966). Systematic corrections to star-
catalog positions were applied where appropriate. All optical data received
from other agencies were corrected in the same way. The accuracy of the

optical data range from 1 to 4 arcsec [Lambeck, 1969a].



The laser range data are considered accurate to about 2 m and are re-
duced by use of the corrections described in Liehr [1969]. The influence of
timing errors at the stations has to be considered. For passes with more
than 10 observed points, 10 points equally spaced in the pass are selected. To
account for redundancy and systematic errors of the laser data, the assumed
accuracy of each laser point is taken at 5 m for the SAO and GSFC laser data
and at 10 m for the CNES data.

Reference System. SAO has its own master clock, and through VLF

transmission maintains its own coordinated time system called A.S. The
principal time reductions were to convert the GSFC data from UTC to A. S,
and the CNES data from A3 to A.S. The UT1 data used in 1966 were a com-
bination of final and preliminary values of the United States Naval Observatory
(USNO). An examination of the differences between the USNO values and
those of the Bureau International de 1'Heure (BIH) revealed differences
approaching 5 m. For the present solution, BIH UTI1 values have been
adopted throughout. It appears that these data may be a limiting factor for
the ultimately attainable accuracy of station positions. The polar-motion
data were taken from the International Polar Motion Service (IPMS). The
difference between these and the BIH data for the period since they were
referred to the same origin is as much as 1.5 m. The IPMS data used here
were all referred to the mean pole of 1900-1905. The coordinate system used
is the equator of date and the equinox of 1950. 0. The choice of this system

is discussed further in section 3. The position of the earth with respect to

this system was tabulated in terms of the UT1 and polar-motion data.

As in 1966, the determination of the zonal harmonics was a precursor
to this analysis. With use of the 1966 solution, the orbital information was
completely revised. Kozai's [1969] zonal harmonics to JZl were used as
starting values. The coefficients are listed for reference in Table 1. Also

given are the adopted values for GM, as and the velocity of light c.



3. DYNAMICAL SOLUTION

The main problem in celestial mechanics is to develop formulas (a
theory in this nomenclature) that predict the trajectory when the forces and
the initial conditions are established. In general, we must be satisfield
with approximate solutions, which for our purpose are quite satisfactory.

Alternatively, a direct numerical integration of the equations of motion

could be carried out.

The forces we consider are the gravitational attraction of the earth,
moon, and sun and the nongravitational effects of radiation pressure and air
drag. In this analysis, we have chosen satellites that are dominated by the
geopotential and for which other effects can, in some way, be assumed
known. Kaula [1966b] and Gaposchkin [1966a] describe detailed methods for
orbital analysis. Gaposchkin [1968] discusses some considerations of this

analysis, and further details are given in Gaposchkin and Lambeck [1970].

The gravity field of the earth, or equivalently, the geopotential, is quite
irregular. The geopotential V can be represented as an infinite series of

spherical harmonics, and the form adopted for this analysis is
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where GM is the product of the gravitational constant and the mass of the
earth, ¢, \ are earth-fixed latitude and longitude, a, is the equatorial radius
of the earth, and
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where r is the greatest integer = ({ - m)/2. Expression (1) uses a mixed
normalization. The expression le (sin ¢) is the fully normalized associated

Legendre polynomial, i.e.,

P?  (sin ¢) {SID MM : do = 4w #0
v Im cos mA\ - » W
* sphere

and Clm’ Sﬁm are fully normalized coefficients, as previously published
(sometimes designated as sz, Sﬂm)' The P, (sin ¢) are the conventional
Liegendre polynomials, and the Jn are conventional harmonics. To include

the Jn in the fully normalized form we have
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and the summation in equation (1) would be m = 0,1,2,...,£. The Clm’

Sfm are called tesseral harmonics, and the Jn are called zonal harmonics.

For a systematic development, see Heiskanen and Moritz [1967].




In equation (1) we assume Jl = C21 = SZl = 0 because the origin of the
coordinate system chosen is referred to the earth's center of mass, and the
z axis (¢ = 7/2) is along the principal axis, i.e., the axis of maximum moment
of inertia. In fact, these are only assumptions and one can only approximately

realize such a coordinate system.

The tesseral harmonics are determined from the short-period (1 revolu-
tion to 1 day) changes in the orbit. The detailed structure of the orbit must
be observed, and each observation provides an observation equation. Data of

the highest possible precision are needed.

Apart from the resonant harmonics, the terms higher than{ = 12,
m = 12 are weakly determined by the satellite data — when the satellite is
low, it is infrequently observed — but it had been demonstrated in early
iterations that the surface gravity could detérmine these higher harmonics.
The satellite solution was limited to those harmonics that have an effect of
greater than 3 to 4 m on the orbit. The resulting terms were complete
through £= 12, m = 12, omitting C/S(11,7); C/S(12,6); and C/S(12,9). Higher
order terms selected were C/S(£,1) 13 =4 =16; C/S(£,2) 13 =4 = 15;
C/S(14,3); C/S(£,12) 13 =4 = 19; C/S(£,13) 13 = £ =21; C/S(¢, 14)
14 <0 =<22. Them=9, 12, 13, 14 terms are resonant with some satellites.

Gaposchkin and Lambeck [1970, Table 4] list the resonant satellites with

their resonant periods. Several satellites are resonant with more than one
order. The stations were restricted to those observing many satellites.
Other stations were more appropriately determined by the geometrical

solution.

Table 2 details the seleétion of satellites used in the final solution,
ordered by inclination. Figure 2 indicates the distribution of satellites,
many of which were not used in the 1966 solution. The selection of data and
unknowns evolved through the analysis. The number of satellites used
ranged from 21 to 25, and the number of arcs in the largest solution was
244, Arcs were added and rejected on the basis of contribution to the normal
equations, number of observations for a particular station, improvement of

distribution for a resonant harmonic, and quality of the orbital fit.



4. GEOMETRIC SOLUTION

The geometric method for determining station positions from observa-
tions of satellites does not require any knowledge of the orbit, since the
object is observed simultaneously from two or more stations and the relative
positions of these stations are computed by a three-dimensional triangulation
process. The geometric solution does not give any information on the position
of the earth's center of mass, nor does it give a scale determination if only
direction observations are used. The solution is further characterized by
highly accurate directions between stations, but also by an unfavorable error
propagation in station coordinates. When combined with the dynamic solution,
the geometric solution contributes significantly to the solution for station
coordinates and provides a valuable means of assessing the reliability of these

results.

A total of 38 stations was involved in this solution, and 20 of these were
also used in the dynamic solution. Observations from 16 SAO and 4 United
States Air Force (USAF) Baker-Nunn cameras, from 13 National Aeronautics
and Space Administration (NASA) MOTS cameras, and from 7 European
stations were utilized. Approximately 50, 000 individual direction observa-
tions were used in the analysis, a number comparable to that used in the
dynamic solution. The distribution of the data among the stations is given

in Gaposchkin and L.ambeck [1970, Table 6]. Most of the observations have

been made to high-altitude satellites not used in the dynamic solution. These
satellites include 6102801 (Midas 4), 6303004, 6605601 (Pageos), and 6805501.
For stations closer than about 2500 km, observations in both the passive and
the flashing modes of 6508901 (Geos 1) and 6800201 (Geos 2) form the majority
of the data.

The Baker-Nunn network is used here as the basic global framework in
the adjustment, but because of the station distribution this net is best con-
sidered in two parts: the American-Pacific stations (group 1) and the

Afro-Eurasian stations (group 2). These two groups link up at San Fernando



(9004), at Tokyo (9005), and to a lesser extent at Oslo (9115), so that all the
SAO stations with the exception of Woomera (9023) can be connected into one

net.

Independent adjustments for the stations in these two groups, as well as
for a third group comprising the MOTS data from North America and a fourth
comprising data from the European stations, were performed. This sub-
division was made in order to isolate and detect possible systematic errors
arising from different reduction techniques or instrumentation used in the
different data sources and to separate the propagation of variances caused
by the poor geometry provided by the station positions from the propagation

of the variances of the observed quantities.

Then, the four groups of stations were linked via common stations. In
linking the groups it was necessary to determine only the relative transla-
tions and scale. No differential rotations need be considered, since all the
data used in this analysis refer to the same astronomical reference system,

polar-motion data, and UTI.

These adjustments were made by a least-squares procedure, carrying
along the full covariance matrices of the functions of the observed quantities
from step to step. Such a procedure is equivalent to adjusting all the data in
a single step [Tienstra, 1956; Baarda, 1967], but it has the advantage of
isolating possible systematic errors in the data. If statistical testing of the
results indicated the presence of such errors, the adjustments were further
split up in an attempt to locate the faulty data. The statistical testing proce-
dures used followed the ideas of Baarda [1968].

Throughout the adjustment it has been assumed that observations taken
at different time instants or from different stations are uncorrelated.
Systematic timing errors may prevail over a long period, so that the first
assumption is difficult to justify. The second assumption, however, appears
generally acceptable, since error in time kept at distant stations is almost
always uncorrelated. An analysis of the results of the adjustment of the

various steps will indicate whether or not these assumptions are valid.



For the single station-station vector adjustments, the average variance

factor is 1.5 and varies from 0.7 to 3.1 (Table 7 of Gaposchkin and Lambeck

[1970]). If no systematic errors are present, the expected value of this
quantity should be unity. For example, station-station vectors associated
with station 9028 consistently show a large variance factor, indicating possi-
ble systematic errors in data from this station. The accuracies of the
station-station vectors vary between 0.2 and 2 arcsec depending on the num-
ber of observations and the station-satellite geometry. Figure 3 plots the
accuracies for vectors between SAO Baker-Nunn cameras for which the
number of simultaneous events is greater than 30. Also shown are the

expected accuracies given by the expression [Lambeck, 1969b]

2 5 1

\% og 0.09(L/h) - 0. 03
-2 n 1

A 0. 34(L/h) - 0. 15

where o is the accuracy of a synthetic observation (1.5 arcsec) and L /h is
the average ratio of length of station-station vector to satellite height (= 1. 2);
Oy is the accuracy in the vertical component and Tp is the accuracy in the
azimuth component of the station-station vector, and generally the correla-

tion between these components is small.

The variances of unit weight for the adjustment in the second phase of

the four groups of stations are the following:

group 1: cr? = 1.39 (Baker-Nunn, Americas, Pacific, Atlantic)
group 2: 0‘% =1.59 (Baléer—Nunn, Afro-Eurasian)

group 3: o"g = 0. 93 (European Optical)

group 4: O'Z = 1.99 {North American MOTS).
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Application of the variance ratio tests to the results leads to the gen-
eral conclusion that, with the exception of the data in group 3, the null
hypothesis (i. e., there are no model errors) is to be rejected. However,

a reevaluation of the original data gave no indication where the problems may

occur, and the results have, of necessity, been accepted.

Finally, the adjustment linking the four groups of data gives a vari-
ance of unit weight equal to 1.4 with 16 degrees of freedom and
FO. 95, 16, o= 1.71. This suggests that the observations and methods of

reduction used in the four groups are compatible.

To investigate further the unsatisfactory conclusions that have to be
drawn from the independent group adjustments, the directions between stations
were computed from the linked adjustment results and compared with the inde-

pendent group station-station vectors (see Gaposchkin and Lambeck [1970]

Figure 4 for some examples). Both these vectors represent estimates of the
same quantity, and they can be expected to lie within the accuracy estimates
given for them. Comparisons for all the station-station vectors show that

this is the case about 6 0% of the time.

Denoting the mean accuracy of a station-station vector derived from

phase 1 by 0. and that derived from phase 3 by o, and denoting the angular

1 2°
distance between the two estimates of the vector by 6, we would expect that

on the average
5% =< (1/2)(«7? + o‘g)

These quantities are given in Table 7 of Gaposchkin and Lambeck [1970],

and their values, averaged over the vectors used, indicate that this condition

is not satisfied unless the variance estimates are multiplied by a factor

K% = °
(1/2)(e

2
2 2
1+0’2)
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These results yield a value of k2 = 2. 8, and the covariance matrix for the
final geometric solution is multiplied by this number. The final directions

between stations are given in Table 8 of Gaposchkin and Lambeck [1970].

5. INFORMATION FROM DEEP-SPACE PROBES

The DSN has used data from its tracking of deep-space probes to obtain —
among other parameters — the relative longitudes and the distances to the
earth's axis of rotation of their antennas [Vegos and Trask, 1967; Trask and
Vegos, 1968]. As the JPL sites can be related to nearby Baker-Nunn sites,

by use of ground-survey information, a valuable and completely independent

control of the results is possible. Comparison with the JPL data is particu-
larly important for the two instances where the geometric solution is either
very poor (South Africa) or nonexistent (Australia). The two sets of data
also complement each other since the JPL soiution gives a very strong scale
and relative longitude determination but no latitude information, whereas the
SAO solution accurately determines the orientation with respect to the astro-

nomical reference system.

Comparisons of the JPL and SAO results were made by Veis [1966] and

Vegos and Trask [1967] using data from the Ranger missions. However,

more refined JPL solutions have recently become available using data from
the Mariner 4 and 5 missions. The solution used in the present analysis is
that of Mottinger [1969], called LS 25. Table 3 gives his determination for
the station locations. Mottinger estimates the standard deviations of the
computed quantities to be about 3 m. In this solution the polar-motion data
from BIH and UT1 derived from USNO data are used. Thus, a difference in
longitude between the JPL and the SAO solution can be expected. A longitude
difference can also arise from possible discrepancies in the right-ascension
definitions of the planetary ephemeris used by JPL and of the star catalog
used at SAO.

12



The geodetic coordinates of the JPL and associated Baker-Nunn stations
are given in Table 10 of Gaposchkin and Lambeck [1970]. In three cases,
9002—4751 (South Africa), 9003—4741 (Australia), and 9113—4712 (United

States), the survey distance between the stations is small and any datum tilts

or distortions should not cause any problems when the geodetic survey infor-
mation is used to relate the two earth-centered systems. However, for the
other two JPL-SAO station groups, 9003—4742 and 9004—4761, this may not
be true, and corrected survey differences have been computed based on the

datum adjustments of the European and Australian datums [Lambeck, 1970a, b].
6. SURFACE-GRAVITY DATA

Surface-gravity data provide a means of comparing the satellite solution
with an external standard and of improving the overall gravity-field solution.
The satellite solutions are most suited for determining the lower order
harmonics, while the surface-gravity data are expected to contribute most to
the higher order terms. The dynamic satellite solution described above gives
a complete representation to degree and order 12, with the exception of the
(11,7), (12,6), and (12,9) harmonics; and for higher degree only those
coefficients with orders 1,2, 3 and 12,13, 14 have been determined from the
present data. The surface gravity, on the other hand, does not reflect such a
partiality to certain coefficients, and all terms of the same degree can be

determined with about equal reliability.

The gravity anomalies Ag can be related to the harmonic coefficients by

e ¢] .
N
Ag= vy E (£-1) %) (C,, cosm\+S, sinm\) P, (sin?)
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where CZ 0 and C4 o are referred to a specified reference ellipsoid, in this

case f= 1/298.258, ™ corresponding to Kozai's [1969] determination for T,
Thus, if Ag is known all over the earth, the harmonic coefficients can be
estimated. This approach was used by Kohnlein [1967b] and is also used

here.

No serious attempt has been made to determine estimates of the zonal
harmonics from the surface-gravity data because of its poor distribution,

particularly at the southern latitudes.

Data prepared by Kaula [1966a] were used in this analysis. His basic
data ‘consisted of 1° X 1° mean free-air anomalies computed essentially by
the techniques described by Uotila [1960] . These anomalies were combined
to form mean values for areas of 60X 60 + 30 n mi (nautical miles) in order
to obtain a set as nearly statistically uniform as possible. To obtain esti-
mates for 300-n mi squares, Kaula next estimated 60-n mi area anomalies for
the unsurveyed areas applying linear regression methods [Kaula, 1966c] to
the 6 0-n mi means within the 300-n mi area. Finally, he computed the
300-n mi means as the arithmetic mean of all the observed and extrapolated
60-n mi means within the area. The results were 935 mean anomalies for
300-n mi squares covering 56. 5% of the globe and are given in Gaposchkin
and Lambeck [1970, Table 12].

For the remaining 43. 5% of the globe, three alternative assumptions

were made in the present analysis:

1. No assumptions were made about these areas and only the observed

anomalies were used.

*The flattening f is a derived quantity, depending upon a, among other things.
Using a, = 6.378155, the value adopted for this analysis is f = 1/298. 257.
A better value (see section 7 or Lambeck [1970a]), a_ = 6.378140, gives
f=1/298.258. The formulas for f are taken from Cook [1959].

14



2. The model anomalies generated by Kaula from a linear regression

analysis of his 935 observed squares [Kaula, 1966d] were used.

3. The anomalies were set to zero and a large variance was used.

Kaula used for the variance of each 300-n mi square

2 2
o = gT/(ni+ 1)

g;

where g,?'[, =274 mga12 is the mean value of the square of the gravity anomaly,

and n is the number of observed 60-n mi areas contained in the 300-n mi square.

However, the several assumptions made in computing the gravity
anomaly by linear regression may make this variance too small. The most
important assumption made is the one restricting the regression analysis to
points within the 300-n mi square and ignoring possible correlations of
gravity with topography. Consequently, in the present analysis the above
variance estimates have been multiplied by a factor of 4. In the analyses of
earlier iterations of the combination solution, this factor was found to give
a set of potential coefficients that improved both the satellite orbits and the
surface-gravity comparison. With this variance a 300-n mi square with a
surveyed 60-n mi area receives a standard deviation of 23 mgal, while a
completely surveyed 300-n mi area (25 60-n mi squares) receives a standard

deviation of 6. 5 mgal.

Some screening of the surface-gravity data was done by comparing the
gravity anomalies from the combination solution in any one iteration with the
surface-gravity data and rejecting an anomaly using a three-sigma criterion.
This does not necessarily imply an error in the surface-gravity data, but it
could mean that the rejected anomaly represents a short-wavelength variation

that is not reflected in the satellite solution.

In the final solution, 38 anomalies were rejected. Of these, five were

squares with n = 10 and one was a square with n = 20.
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More recent surface-gravity compilations have been published by Talwani
and Le Pichon [1969] and Le Pichon and Talwani [1969] for the Atlantic and

Indian oceans. These new data have been used for comparisons with the

new satellite combination solutions given here.

A comparison of results obtained using the different assumptions about
the surface gravity in the unsurveyed areas indicates no difference between
the anomaly set derived from regression analysis and the set of zero
anomalies. This may have been expected since g%, for the predicted anomalies
is only 121 mgalz, very much less than either the g% = 274 mgal2 for the
observed squares or the variances associated with the predicted values
(30 mgal)z.

However, these two tests did show a difference in results from the one
that ignored the unsurveyed areas altogether. This difference occurred in
those extensive areas in southern latitudes where there were no surface data
and where the station distribution was unfavorable. The effect of using
the model anomalies was to reduce by about 5 m the heights of the major
geoid features in these areas. In the other areas the differences in geoid

heights did not exceed 2 m.
7. COMPARISONS AND COMBINATION SOLUTION

Data from the various sources can now be combined to determine a
consistent set of geodetic parameters of the earth. All four methods discussed
in the preceding sections are incomplete in one way or another, and the inade-
quacies in the mathematical models used will lead to unrealistic accuracy
estimates. Consequently, the ‘data from the different sources serve two
purposes: one of comparison, to obtain realistic accuracy estimates and to
resolve any biases in the results; and one of combination, to obtain the most

complete and reliable set of geodetic parameters.
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Combination Solution. In combining the two satellite solutions, it must

be remembered that the geometric solution is essentially unscaled and its
origin is arbitrarily determined, so that in the transformation linking it to
the dynamic solution three translation and one scale parameters must be
introduced. A rotation term is also introduced to determine whether a
systematic longitude discrepancy exists betweeh these two solutions. Such a
term could conceivably arise from correlations that exist in the dynamic

solution among longitude, time, and right ascension of the node.

The JPL solution of Mottinger [1969] is combined with the satellite solu~
tion by introducing a second longitude rotation and a second scale parameter.
The need for the former has been discussed in section 5, and the latter was
introduced to absorb possible biases in either solution that have the charac-
teristic of a scale error. In theory, this scale factor should be zero since
both SAO and JPL have used the same value for GM, but '"pseudo'’ scale
errors could be introduced. For example, a systematic error in the refrac-
tion corrections to Baker-Nunn observations could have an effect similar to

a scale error,

In combining the JPL solution with the other data, the normalized covari-
ance matrix supplied by Mottinger was used. This matrix was scaled by his
accuracy estimates for the components of the station positions and preserves

the strong correlation that exists between the longitudes of the solution.

The results from the surface-gravity analysis can be directly related to
the combined solution since both refer to the same reference ellipsoid and
GM. The zonal harmonics derived by Kozai have not been included in this
combination, since his solutiori is quite independent of the satellite analysis
of the tesseral harmonics, and the surface-gravity data, because of their

poor distribution, do not contain any significant zonal information.
The final combination solution contains a total of 424 unknowns, 117

station coordinates, 296 harmonic coefficients, and 11 scale, rotation, and

translation parameters. In a solution of this kind, several iterations were

17



made (as described in section 3) and several alternative weighting schemes
considered. These weight factors are used to scale the covariance matrices
derived for the individual solutions and in the combination. As already indi-
cated, the covariance matrix of the geometric solution has been multiplied
by 2.8, and the covariance matrix of the surface-gravity results, by 4. 0.

The covariance matrix of the dynamical solution has been multiplied by 4.5
for the reasons described in the next section, while for the JPL results, the
accuracy estimates of Mottinger have been adopted without any further modi-
fication. This weighting scheme gives the best agreement in the tests
described in the next section. The final results for station coordinates are

presented in Table 4, and for harmonic coefficients, in Table 5.

)
2 _ 2 2
The power spectrum o, = (1 /nﬂ) mézo; (clm + Sl
solution is given in Figure 4 for £ = 6, where.nl is the number of coefficients

) of the combination
m

of degree £ included in the summation. They show a remarkable adherence
to the rule of thumb @, = 107> /4%,

Figure 5 gives the geoid corresponding to the new combination solution
and a flattening of 1/298.258, Figure 6 the geoid corresponding to the
hydrostatic flattening of 1/299. 67, and Figure 7 a plot of the free-air

gravity anomalies corresponding to the combination solution.

Table 4 contains the accuracy estimates of the station coordinates.
These estimates are the formal statistics from the combination solution, but

as the subsequent comparisons show, they appear to be realistic.

Figure 8 illustrates the precision estimates of the geoid heights as com-
puted from the precision estimates of the spherical harmonic coefficients.
In this computation the correlation between coefficients has been ignored
because the correlation coefficients are generally less than 0.2. This
neglect and the fact that for equal degree and order O'éﬁm = ng
that the geoid-height precision estimates are essentially longitude independent

mean

and symmetric about the equatorial plane. Kozai's accuracy estimates for
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his zonal harmonics were included in this calculation. Subsequent com-
parisons with surface gravity and astrogeodetic data show that these precision
estimates are quite realistic, and the geoid appears to be determined with an
accuracy of 3 to 4 m. Of course, these accuracy estimates refer to the
generalized geoid and do not imply that the geoid is everywhere known with
this accuracy. In areas such as the South Pacific where there are no
surface-gravity data and where the gravity field cannot be directly sampled,

the uncertainty in geoid height may be larger than the 3 or 4 m.

Comparison of Geometric and Dynamic Satellite Solutions. Figure 9 and

Table 6 show the results for the comparisons of the directions computed by
the two solutions. The accuracy estimates given by the two solutions are
indicated by the error ellipses. The difference 6 in the positions derived
from the individual solutions is a good indication of the accuracies that can
be expected for the combination-solution coordinates, although it must be
pointed out that in Figure 9 the difference between the two solutions results
from uncertainties in the coordinates of both stations and that at each station
a number of such comparisons can usually be made. Thus, the accuracy of
the station positions relative to the origin of the coordinate system should be
better than these figures indicate.

The accuracy estimates o , of the geometric solution directions are

obtained by the method descrﬂg}ed in section 4. The dynamic solution, how-
ever, gives accuracy estimates for the coordinates — and consequently for the
station-station vectors Ty T that are ovezroptimistic., This is usually evident
from figures such as Figure 9, where &0 is often considerably greater than

2

either (TIZ) OT 7 5. Making an an‘alysis similar to that used in the geometric
solution for establishing the accuracy indicates that the covariance matrix
of the dynamic solution should be multiplied by a factor of ki’ = 4.5, When
harmonic coefficients derived from different iterations of the dynamic satel-
lite solution are compared, it also appears that the formal variances must
be multiplied by a factor of about 5 in order to obtain realistic accuracy

estimates.
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Figure 9 also indicates the directions of the station-station vector
derived from the combination solution compared with the geometric and
dynamic results. In view of the above, these comparisons indicate that for
the fundamental Baker-Nunn stations (those numbered 9001 to 9012) the com-
bination-solution coordinates should be reliable to better than 10 m. For
the new Baker-Nunn stations (9021, 9028, 9029, 9031, and 9091), from which
there are fewer observations, the comparisons indicate that the combination-
solution coordinates should be reliable to better than 15 m. These estimates
are in agreement with the formal statistics given in Table 4. The longitude
difference between the two satellite solutions obtained from the combination

solution is -0.2 + 0.5 prad and is not significant.

Comparison with Satellite Orbits. Each solution resulted in improved

orbital residuals; for the final solution the orbital residuals for satellites
such as Geos 1 or Geos 2 are less than 10 m. These orbits are computed
from a combination of laser and Baker-Nunn data for 30 days. The rms
residuals for the optical data are 2 arcsec. The laser data have an accuracy
of 1 to2 m. The rms is 7 m in all cases and no residuals exceed 10 m.
These are orbits with significant amounts of laser data from 2 or 3 stations.
The 7-m orbital errors can arise from station-coordinate errors (probably
about 5 m), geopotential errors (possibly 5 m), and unmodeled periodic

perturbations.

Comparison of Satellite and Deep-Space-Probe Solutions. In order to

compare the satellite and JPL solutions, a combination solution using only
the satellite and surface-gravity information has been made. Table 7 indi-
cates the results for those Baker-Nunn stations that are related to the JPL
antennas. From the ground- su[rvey information given in Gaposchkin and
Lambeck [1970, Table 10], the coordinates for the JPL sites in the SAO

system can be computed and the differences in longitude A)\i and in distance to
the rotation axis Ari are given in Table 8. This table also gives the accuracy
estimates from the statistics provided by the two solutions and the ground
survey. The differences in longitude immediately reflect the systematic

longitude differences between the two solutions: the JPL longitudes are to
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the east of the SAO longitudes. From the overall combination solution dis-
cussed in section 7, these transformation parameters are solved for and
yield AN = -3.2%0.5 prad and Ar/r = (+0.3 = 0. 5) 10-6, the scale of the
SAO system as defined by the station coordinates being larger than that of
the JPL system.

The residuals A\ - A)xi and Ar - Ari are in all cases less than 10 m and
support the accuracy estimates given in Table 4 for stations 9002, 9003, 9004,
and 9113. Table 9 gives the adjusted coordinates of the JPL stations in the

SAO reference system.

The longitude difference cannot be attributed to the difference in the UTI1
time systems used by the two agencies, since at the time of the Mariner 5
observations, UT1(JPL) - UTC = 89. 0 msec and UTI1(SAO) - UTC = 101.4
msec, so that the expected longitude difference would be +12 msec or 0. 8 prad.
The total unexplained longitude difference is, therefore, -4. 0 prad. This
discrepancy appears to be due to different definitions of the right ascension
of the vernal equinox. In the case of SAO this is defined by the star posi-
tions given in the SAO catalog — which refers to the FK4 system — and in
the case of JPL the vernal equinox is defined in the planetary ephemeris

used [Melbourne and O'Handley, 1968].

The scale difference between the two solutions is hardly significant in
view of the standard deviation. This would be expected since both solutions

have used the same GM value.

Comparison with Surface Gravity. To compare the satellite solution

with the surface gravity, the following quantities defined by Kaula [1966a]

have been computed:

(g%) mean value of gé., where g is the mean free-air
gravity anomaly based on surface gravity, indicating
the amount of information contained in the surface-

gravity anomalies;
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(gs) mean value of gg, where gg is the gravity anomaly
derived from the satellite solution, indicating the
amount of information contained in the satellite-gravity

anomalies;

<ngS) an estimate of the mean square of gy the true value
of the contribution to the gravity anomaly of the estimates
of geopotential coefficients from the satellite solution,
the amount of information common to the surface-gravity

and satellite-gravity anomalies;

2
((gT—gS) ) mean square difference of the gg and g
E{eé} mean square of the satellite error;
E{e%} mean square of the surface-gravity error;

E{ég?‘} mean square of the error of omission, the difference

between the true gravity anomaly and g1

If the satelllte solution gave a ''perfect’ estimate of the C Im and Slm
that is, (gs> (gH> (= (ngS>), then eé would be zero even though gy would
not contain all the information necessary to describe the total field. The
information not contained in the satellite field — the error of omission dg —
then consists of the neglected higher order coefficients. The quantity
((gT—gS)2> provides a measure of the agreement between the two estimates,
g and ggs of the gravity field and is equal to the sum of the estimates of the
three types of errors. Thus,

(gp-8g)°) = Elegh+ Ble} + Efog?)

Another estimate of gy can be obtained from the gravimetric estimates

of degree variances <r [Kaula, 1966a],

2. ;2
Efggl=D = 51; Zi+1 %1
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where n, is the number of coefficients of degree { included in gy Table 10
gives the aj for degree 0 to 16 as well as the degree variances of the satellite

and combination solution computed from
2 _ 2 2 ( 2 2 )
o, =Y (£ -1) ; C£m+S£m

If both the satellite solution and the surface gravity gave ''perfect" results

for terms up to a given degree, then
2\ _ 2, _ 24 _
(8g) = (grgg) =D and E{€ } = E{€1}=0

Table 11 summarizes the estimates obtained for these quantities from
the satellite solution, the combination solution, and the Gaposchkin [1966_1_3_]
M1 solution. All three sets contain the same zonal harmonics. The esti-
mates are given for three sets of 300-n mi squares: (1) the squares for which
the number n of observed 60-n mi squares is equal to or greater than 1, (2) the
squares for which n = 10, and (3) the squares for which n = 20. For the last
data set the comparisons are made for the three fields truncated for different

degrees as well as for the total fields.

The variations among the estimates obtained for the three types of
errors, E{e ;}, E{e ,i,}, and E{bgz}, result from the assumptions made about

the complete randomness of the quantities g °8s € and € g

The combination solution gives the best results in that there is good
agreement between the three estimates (gs> <ngS>’ and D of (gH> and the
E{e }and ((gs g) ) are small. The negative value for E{e }when £ =10
is caused by the combination solution containing the gravity anomalles against
which the tests are made. The estimates of the errors of omission are still
quite large when compared with the estimates of eé and e%, indicating that
the surface-gravity data have additional information that has not been extracted

in this solution.
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These tests, however, are not entirely valid for the combination solution
smce the 811 og, € and €g are no longer independent. A better estimate of

E{e } can be obtained from the o o, of the combination solution as indicated

cC’ S

by Lambeck [1971]. For the total field E{e } 34 mgalz, giving

E{6g2} 30 Ingal2 Also, the estimate of E{e } is likely to be too small, so
that E{6g } is even further reduced, and in reallty there does not seem to be

very much additional information in the surface-gravity data used.

The results obtained from the satellite solution alone are mnot in so gooad
agreement with the surface-gravity data as is the combination solution. For a
gravity field complete to 8,8, the Ml and the new satellite solution give
almost equivalent comparisons. For both, the E{e S} are small and there is
good agreement among <ngS> <gs>, and D, indicating that the two solutions
are equivalent and that they contain most of the information in a '"correct"

8,8 field. At 10,10 the new satellite solution shows a marked improvement
in the comparison((gT—gS)2>, and this field also appears to be as good as
can be expected. But beyond about the 11th order the comparisons deteriorate

and the E{eé} increase.

Further tests with surface-gravity data were made by use of the recent

compilations by Talwani and Le Pichon [1969] for the Atlantic Ocean and for

the Indian Ocean [Le Pichon and Talwani, 1969]. Figure 10 shows free-air

gravity-anomaly profiles computed from 5° X 5° area means from these com-
pilations and from the combination solution. With the exception of the

first, these profiles are taken along the ships' tracks where continuous
gravity measurements were obtained. The first profile, along latitude 3225
in the North Atlantic, is midway between two parallel ship cruises. All
profiles are referenced to the international gravity formula. The accuracy

of the 5° X 5° area means is assumed to be 5 mgal.

Table 12 gives <(gS-gT)2> for each of these profiles, and from these
numbers the accuracy of the gravity anomalies computed from the combination
solution can be computed. The average value is 10 mgal, or about 3.5 m in
geoid height. This average accuracy estimate is in good agreement with the

previous estimates.
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Comparison with Astrogeodetic Data. Geoid heights obtained from astro-

geodetic leveling are available for several major datums. These data, like
the surface-gravity data, could be used as a further input in the combination
solution. However, the coverage extends only to areas where reliable
surface-gravity data are also available, and the contribution of the additional
information to the global solution is not very significant. Instead, the astro-
geodetic data have been used for comparison purposes, thus providing an

independent estimate of the accuracy of the global solution.

To compare astrogeodetic geoid profiles with the global solution, it is
necessary that the former refer to an ellipsoid, with its origin at the earth's
mass center and of the same dimensions and parallel to the ellipsoid of ref-
erence used for the global solution. The transformation elements are given for
several major datums by Lambeck [ 1970a]. When these transformations
contain rotation elements, at least part of the systematic errors in the
astrogeodetic heights is absorbed. In the case of the Indian Datum only one
station is available for establishing the relationship between the datum and
the global solution. Thus only the three translation elements could be deter-

mined and a systematic tilt can be expected.

The following comparisons were made:
1. the geoid section along the 34th parallel in North America given by
Rice [1962];

2. a section along the meridian of 260° from 65° North to 18° North,
selected from the compilation by Fischer et al. [1967] for the North
American Datum (NAD);

3. two profiles across Australia, one along the latitude circle of -30°

and the other along the meridian of 138°, given by Fischer and Slutsky [1969];

4. a profile along the meridian of 75° through India [Survey of India,
1957];

5. a profile along the meridian of 16° through central Europe [Fischer,
1967].
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Figure 11 gives the results. All profiles refer to a reference ellipsoid
with a = 6378155 m and 1/f = 298.25. The astrogeodetic profiles are smoothed

to remove any information with a half-wavelength of less than about 200 km.

The accuracy of the astrogeodetic profiles was assumed to be of the order
of 1.5 m. This is somewhat greater than the accuracy generally stated for
this type of observation (e.g., Bomford [1962]), but the stochastic nature of

the transformation elements also has to be considered.

Table 13 summarizes the results of the comparisons. The average
value of g is 3.2 m and is in agreement with the accuracy estimates derived

earlier for the geoid heights of the combination solution.

The negative value for Ah for all the datums considered indicates that
the adopted semimajor axis of the reference e‘llipsoid is too large, by about
15 m as noted, for example, by Veis [1968]. Figure 11 also suggests a
possible tilt in the South Asian datum.

Comparison with Terrestrial Triangulation. For stations in North

America and Europe, where there are extensive surface triangulation nets,
it is possible to compare the coordinates of the tracking stations as deter-
mined from the combination solution and from terrestrial measurements.
But before a comparison can be made, the latter coordinates have to be
transferred to a coordinate system coincident with the global geocentric
system. These transformations are discussed in Lambeck [1970a]. For the
present solution, the distances between stations are used as the basis of the
comparison. These distances are derived from the surface data scaled by

the factors determined from the datum adjustments.

Table 14 summarizes the results. The accuracy estimate is computed
from the accuracy estimates of the coordinates for the combination solution
and from accuracy estimates of the terrestrial data. The latter have been

assumed to be reliable to 1 in 200, 000.
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The first part of Table 14 refers to coordinates in the European Datum.
All available stations, with the exception of Riga 9074, have been used in
this comparison. The second part refers to stations in the NAD. All avail-
able stations were used. For most of the comparisons, o > Ar, indicating
that the accuracy estimates given for the coordinates of the combination
solution (Table 4) are reliable. For station 9115 the agreement is not so

good but it is always within the 30 level.

Comparison with the 1966 Standard Earth Coordinates. Table 15 gives

the differences in the coordinates determined in the present solution and in
the 1966 solution. For these stations the accuracy of the latter solution was
estimated as 15 to 20 m, whereas the present solution is considered to be
better than 10 m. With a few exceptions the differences fall within these
limits. The exceptions are stations 9002 and 9003 and the Z component of
stations 9007 and 9011. For the first two stations no comparisons nor com-
binations could be made in 1966, but a combination and a comparison with
the JPL data were possible in this solution and the results are in excellent
agreement (Table 8). As for the other two stations, the 1966 geometric
solution gave a very weak determination for the Z components because of the
poor geometry of the station distribution. With the relocation of some stations
and with more data available, this Z component is determined much better in
the present solution and is in good agreement with the results of the dynamic
solution. This can be seen from Figure 9 for the line 9007—9029, where the
horizontal axis corresponds approximately to the Z axis. For the remaining
stations good comparisons and combinations of the geometric and dynamic
solutions were possible in the 1966 solution, and as a result, these coordinates
are not significantly different from the new determination. This stresses the
importance of having the two independent techniques to determine the station
positions. The similarity of the differences in the Z coordinates for stations
9002, 9003, 9007, and 9011, all of which lie in south latitudes, suggests that
the 1966 dynamic solution may have had some systematic biases in it because

of a poor distribution of observations in the Southern Hemisphere.
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8. CONCLUSIONS

1. A combination of the four methods of estimating parameters used in

this analysis gives better results than any subset of these methods.

2. The geocentric station positions of the 12 fundamental Baker-Nunn
stations and the laser-optical sites at Haute Provence (8015-7815) and Athens

(9091—7816) are determined with an accuracy between 5 and 10 m.

3. To improve upon this accuracy, more laser data for the dynamic
solution and laser-optical simultaneous data for the geometric solution are

required. An improvement in the knowledge of UT1 is also necessary.

4. The geopotential has been determined complete through £= 16,
m = 16. Comparisons with surface gravity indicate that up to 10,10 the
satellite solution is about as good as can be expected but that some of the
higher terms are poorly determined. The terms between degrees 11 and 16
are determined largely from the surface-gravity data. The MI 8,8 solution

is not improved upon by the new solution truncated at 8, 8.

5. Comparisons with independent data sets indicate that the generalized

geoid is reliable to about 3 m.

6. To improve the satellite gravity-field determination for terms
beyond £= 11, more satellites in lower orbits, at distinct inclinations, and

tracked with greater precision and uniformity are required.

The numerical results, potential coefficients, and station coordinates
can be obtained by writing the authors. In addition, a report detailing the
empirical data used and the variance-covariance matrix of the final solution,

also available on magnetic tape (upon request), will be issued shortly.
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accuracy of a synthetic observation= 7 prad (= 1.5 arcsec).
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l/nﬂz <0'é + 0'2 >, where n, is the number of coefficients of degree £
m ] ,
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TABLE 1.

and other constants.

Adopted zonal harmonics to J(21) [Kozai, 1969],

J(2)= 1.08262800E-03
J( 4) = -1. 5930E-06
J( 6) = 5.0200E-07
J( 8) = -1.1800E-07
J(10) = -3. 5400E-07
J(12) = -4. 2000E-08
J(14) = -7. 3000E-08
J(16) = 1.8700E-07
J(18) = -2. 3100E-07
J(20) = -5. 0000E-09
GM = 3.986013 X 10

a

20

6

I( 3) = -2.
J( 5) = -2.
I(7) = -3.
J( 9) = -1.
J1)= 2.
T(13) = -1.
J(15) = -1.
J(7) = 8.
J(19) = -2.
J2l)= 1.
crng/sec2

6.378155 X 10° m

2.997925 X 1010 cm/sec

5380E-06
3000E-07
6200E-07
0000E-07
0200E-07
2300E-07
7400E-07
5000E-08
16 00E-07
4400E-07
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TABLE 2. Summary of dynamical data.
Semimajor Perigee
Name or Other Inclination Axis Height Number New Select Laser
Satellite Designation (deg.) Eccentricity (km) (km) of Arcs Days/Arc Satellite Files Data
6001301 Courier 1B 60 vl 28 0.016 7465 965 6 30 X
5900101 Vanguard 2 59al 33 0.165 8300 557 7 30
6100401 6161 39 0.119 7960 700 3 14
6701401 DID 39 0. 053 7337 569 6 14
6701101 DiIC 40 0. 052 7336 579 4 14
6503201 Explorer 27 BE-C 41 0. 026 7311 941 4 30
6000902 6012 47 0.011 7971 1512 7 30
6206001 Anna 1B 62 ppl 50 0. OQ7 7508 1077 12 30 X
6302601 Geophysical Research 50 0. 062 7237 424 6 14
6508901 Explorer 29 Geos 1 59 0.073 8074 1121 21 30 X X X
6101501 Transit 4A 61 ol 67 0.008 7318 885 8 30
6101502 Injun 1 61 o2 67 0. 008 7316 896 4 30
6506301 Secor 5 69 0. 079 8159 1137 2 30 X X
6400101 70 0. 002 7301 921 3 30 X
6406401 Explorer 22 BE-B 80 0.012 7362 912 2 30 X X
6508101 OGO 2 87 0. 075 7344 420 2 14 X
6600501 Oscar 07 89 0.023 7417 868 1 30 X X
6304902 5BN-2 90 0. 005 7473 1070 5 30 X
6102801 Midas 4 6108l 96 0.013 10005 3503 3 50
6800201 Explorer 36 Geos 2 106 0. 031 7709 1101 6 14 X
6507801 ovy 2 144 0.182 8306 416 2 14




TABLE 3.

as determined by Mottinger [1969].

Results for the locations of the JPL, antennas

Station X (deg) r (km) X (km) Y (km)
4712 243.194559 5212. 0535 -2350.4397 -4651. 9819
4741 136. 887507 5450. 1986 -3978.7174 3724, 8454
4742 148. 981301 5205. 3504 -4460. 9809 2682. 4097
4751 27.685432 5742.9417 5085. 4425 2668. 2678
4761 355. 751007 4862.6078 4849.2429 - 360.2752
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TABLE 4. Geocentric coordinates (in Mm) of the stations determined in the
final combination solution. The fifth column gives the formal precision

estimates of the coordinates in meters.

Station X Y Z o Station Name

1021 1118029 =44876316 35942984
1034 =2521702 =be242049 4oT18731
1042 2647515 =50177924 3,656707
7036 =eB28496 =50657458 20816812
7037 =¢191286 =40967280 3,983262

BLOSSOM POINTe MDs
GRAND FORKSs MINNe
ROSMANs No Ce
EDINBURGe TEXe
COLUMBIAs MOs

7039 2,308239 «4.873597  3,394580 10  BERMUDA

7040  2,465067 =5.534924  1,985510 10 PUERTO RICO

7045  =1.240479  «40760229  4,048995 DENVERs COLe .

7050 1,130674  =4.831368 3,994111 Goddard Space Flight Center
7075 +692628  =40347059  4,600483 SUDBURY+ ONTe

7076 1.384174  «5,905685  1,966533 10  JAMAICA

7815 44578370 e457951 44403134 HAUTE PROVENCE, FRANCE

7816 4e654337 1959134 3,884366
7818 50426329 =9229330 30334608
7901 =19535757 =50166996 3:401042
8015 4,578328 2457966 42403179
8019 4e579466 586599 4¢386408
9001 =14535757 =50166996 3401042
9002 50056125 26716511 =2 1775784
9003 =3:983776 3743087 »34275566
9004 5.105588 =e555228 3769667
9005 =32946693 3:366299 3,698832
9006 1,018203 50471103 3,109623
9007 10942775 =5:80408] »1le796933
9008 3376893 49403976 3,136250
9009 2-,251829 «50816919 1327160
9010 976291 =5.601398 20880240
9011 22280589 ~4s914573 =30355426
9012 =5¢466053 =20404282 26242171
9021 =1¢936782 =5:077704 36331916
9023 =3,977766 3725102 =3+303035

STEPHANIONs GREECE
COLOMB<BECHARs ALGERIA
ORGAN PASSe NoM,

HAUTE PROVENCEs FRANCE
NICEs FRANCE '
ORGAN PASSe NsM,
PRETORIAs SeAFRICA
WOOMERAs AUSTRALIA

SAN FERNANDOs SPAIN
TOKYQe JAPAN

NAINI TALs INDIA
AREQUIPA» PERU

SHIRAZs IRAN

CURACAO» ANTILLES
JUPITERe FLAe

VILLA DOLORESs ARGENTINA
MAUT » HAWATI

MTe HOPKINSe ARIZe
ISLAND LAGOONs AUSTRALIA

-
CUNVV LD OOV NV VAVITUVVR RO O NOOO I

—

Yot

9025 =3,910437 3.376361 3,729217 10 DODAIRAs JAPAN

9028 44903750 3,965201 0963872 12 ADDIS ABABAs ETHIOPIA
9029 5,186461 ~3.653856 ~¢654325 12 NATALs BRAZIL

9031 10693803 =4,112328 =4,556649 15 COMODORO RIVADAVIAs ARGENTINA
9050 10489753  =644467478 40287304 14 HARVARDs MASSs

9065 3,923411 0299882 5,002945 12 DELFTs HOLLAND

9066 45331310 0567511 40633093 7  ZIMMERWALDe SWITZERLAND
9074 3.183901 1421448 5,322772 10 RIGAs LATVIA

9077 3,907421 1:602397 4763890 10 UZGHORODs UsSeSeRe

9080 3,920178 =s134738 5,012708 9  MALVERN, ENGLAND

9091 4e595157 2.039425 3,912650 5 DIOYSOSs GREECE

9113  =2,450011 ~4s62642} 3,635035 7 ROSAMUNDs CALe

G114 =1s264838 =3.466884 5,185467 12 COLD LAKEs CANADA

9115 3,121280 0592643 5,512701 17 Harestua, Norway
9117 =6,007402 =lo111859 1.825730 15 JOHNSTON ISLes PACIFIC
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TABLE 5. Fully normalized coefficients of the spherical harmonic expansion
of the geopotential obtained in the final iteration of the combination solution.

are the sine terms.

Cﬂm are the cosine terms of degree { and order m and Sg

I m C S { m C
Im Im Im S£]31
2 2 2:4129E=06 =1:3641E=06 3 1 1,9698E=06 206015E=07
3 2 8,9204E=07 wb,3468E=0T 3 3 6,8630E=07 1,4304E=06
4 1 «5,2989E=07 wh o BT65E=07 4 2 303024E=07 Ta0633E~07
4 3 9:8943E=07 ©leB366TE=0T 6 4 «7:9692E-08 3,3928E=07
5 1 =5,3816E-08 =9, 7905E=08 5 2 6,1286E=07 =3,5087E~07
5 3 =4 ¢3083E=07 ©8o6663E=08 5 4 «2:6693E=07 8,3010E=-08
5 5 1:2593E=07 =5,9910E=07 6 1 =9,8984E=08 3,7652E=08
6 2 504825E-08 «3,5175E=07 6 3 2,7873E=08 4,4626E-08
6 4 =490342E«10 «43038BE~0T 6 5 =241143E=07 =542264E=07
6 6 8¢8693E~08 =74 T56E=08 7T 01 204142E=07 1.1567E=07
T2 2+8306E=07 145645E=07 7 3 2,0285E=07 «2436448E=«07
T 4 =1e9727E=Q7 =1¢1390E=07 7T 5 -8,7024E~10 9,84561E~08
7 6 =2e5B4TE=OT 1:0209E=07 707 1.5916E«07 «bs7T10E=08
8 1 3,1254E-08 2,5696E=08 8 2 44,8161E=08 Be4140E~08
8 3 @50 7444E=08 1.8086E=08 8 4 =1¢5378E=07 7+5264E=08
8 5 =5+6733E=08 661636E=08 8 6 «5,3903E-08 2+5930E=07
8 7 3,4390E=08 8.9168E«08 8 8 =72 7364E=08 66 760TE=08
9 1 163823E=07 =1.6100E=08 9 2 6,6741E=09 =8,1733E=08
9 3 »996463E=08 «lg1817E=07 9 4 5,7125€E-08 1,1183E=07
9 5 =641435E=09 3,3551E=09 9 & 2.4186E-08 2,2028E=07
9 7 =5,0450E-08 =1+2700E=07 9 '8 203359E=07 5,7239€E=08
9 9 =842490E=08 9,2326E=08 10 1 1:1251E=07 «1,016TE=07
10 2 =3,1225E=-08 1 ,0450E=07 10 3 =263346E~08 =1,4137E=07
10 4 who81B5E=08 =b4o3248E=08 10 5 =B8+0004E=-08 =lo4279E«07
10 6 =3,2486E=08 =2,0153E=07 10 7 504961E=08 3,2003E=08
10 8 703957E=08 =T 29T06E=08 10 9 ~be8563E=09 642498E=09
10 10 1:2377E=07 =2, 58B5E=08 11 1 4¢3900E=09 2.9751E=08
11 2 408900E~08 «9,1994E-08 11 3 -623247E=-08 =153109E=07
11 4 =3,0193E~08 5.4317E=08 11 5 3,2523E-08 1,3215€E=07
11 6 3,7517E=08 6,9005E=09 i1 7 4,5726E=08 =1,3862E=0Q7
11 8 604546E-08 ] c6993E=08 11 9 1,1750E=07 =9,9451E=09
11 10 =101736E=07 =] «BY00E=08 11 11 1.1785E=07 il o 0688E=08
12 1 =4¢5955E=08 =3, 1000E=08 12 2 2,7481E=08 705986E=08
12 3 5.8386E=08 5,4784E=08 12 & =4,3649E=08 «252262E=08
12 5 2+3375E-08 4,2637E=08 12 6 =2,3868E=-08 =646770E=10
12 7 1.4507E=08 9,9784E=08 12 8 w5,7854E=09 3,3752E=08
12 9 «3,2232E=08 44285%8E=08 12 10 =] o8590E-08 428382E=09
12 11 =4 s4921E-08 it o 8206E=-08 12 12 =109407E=08 «5,7771E=08
13 1 =5,6042E=08 2+6288E=08 13 2 =l T456E=08 1,7367E=08
13 3 2+3833E=08 «2,8930E=08 13 4 =1 69980E~08 5, 7030E=08
13 5 9:6637E=08 b o TT60E=08 13 6 =8,3417E=08 5,9782E~08
13 7 «5,2217E=-08 «342562E=09 13 8 ko1 T59E=08 =2,0231E=08
13 9 ®w2¢5623E-08 1.076TE=07 13 10 8,6589E=08 =100528E-~08
13 11 =3,3749E=08 5,8541E«08 13 12 «]43229E=09 8,2192E-08
13 13 =T+ 0288E=08 T¢4643E=08 16 1 =2,3090E=08 4,9664E=08
14 2 342120E=08 =l 5 5289E=08 14 3 1,5042E-08 1,1919E=09
14 & 76801 7E=09 ©3,7527E=08 16 8 w255958E=08 2203344E.08
14 6 109140E=08 «5,8721E«08 16 7 1,1061E=08 8,4132E-09
16 8 =3,0273E=08 wboDB3BE«DB 14 9 4,9539E=08 9,2345E-08
14 10 5+3732E=08 =4,316BE=08 14 1} 2, 7833E-08 «8¢1637E-08
16 12 1,2481E=08 »5,7314E=-08 14 13 8,1554E=08 4,5453E=08
16 14 =5,2082E~08 =], 2B40E=08 15 1 »3,5971E=09 440142E=-08
15 2 =4,4833E=-08 =] 6056E=08 15 3 8+3016E=09 =5,7218E«09
15 4 1.3916E-08 606644E=08 15 5 3,1684E-08 1,8250E=09
15 6 7+0020E=08 ] o 1872E=07 15 7 141856E=07 442690E=08
15 8 =9,7657E=08 «3¢5710E-08 15 9 2,2064E=08 2+6632E=08
15 10 »200648E«08 5,3724E<10 15 11 =3,2585E=08 9,4052E=08
15 12 1:0524E=~08 6.8726E=09 15 13 «3,7348E=08 4,0249E=09
15 14 1.2193E=08 «2:6786E=08 15 15 1.4515E=09 «124802E~08
16 1 =243789E=08 Ts6413E=08 16 2 2,1327E=08 3,0669E=08
16 3 w4 o 7358E=08 3,2610E«08 16 4 =1¢1591E=08 4,3001E=08
16 5 =bs4201E=08 3,2230E=08 16 6 =548439E=08 =4 ,2809E=08
16 7 1s0591E=07 .Be)00BE=09 16 8 «8,4738BE=Q8 «2:46TTE=09
16 9 9.0001E=09 =]90628E=07 16 10 «209849E=08 =55246TE=10
16 11 6.8502E=09 =70765E=08 16 12 2,2834E=08 «3,4087E=08
16 13 3,5475E~08 2,0683E-08 16 1lé =7,3590E=09 «252626E~08
16 15 =3,5485E=08 8o%4126E=10Q 16 16 «2,9522E=08 8,8217E=09
17 12 8¢3097E=08 3:5424E=09 17 132 3,2749E~08 492920E~10
17 14 =1:6058E=08 2.7286E=08 18 12 1.1662E-08 8.4724E=09
18 13 456903E=09 =3,554TE=08 18 14 w2 T446E=08 =4,8376E=08
19 12 6,7115E~08 »842623E=09 19 13 3,3201E-08 =b6,3128E=08
19 14 =359779E=09 =2,3817E=08 20 13 5:8374E-08 3,3320E=08
20 14 1.1130E=-08 =] :6183E=08 21 13 3,6928E=09 =1,6288E=08
21 14 50206 7E«08 3,0801E=10 22 14 =8,0549E=09 2.6440Ex08

52



TABLE 6. Summary of differences 6 between directions computed from the

geometric solution with accuracy o and from the dynamic solution with

G,
accuracy o*D(erad). k is the factor by which the latter estimates must be

scaled.

Line o'é c:r]23 62 kz
9001—-9009 2.6 0.7 .2 1.8
9001—9010 2.8 0.9 .8 4.1
9001—9012 6.5 0.2 3.2 0.9
9002—9028  39.0 1.3 57.8 2.9
9004—9008 4.7 0.7 20.2 7.5
9004—9009  14.1 0.4 25.0 3.3
9004—9010  15.1 0.2 10.9 1.4
9004—9028 9.4 0.8 16.0 3.1
9004—9029  28.9 1.0 51.9 3.5
9005—9006  16.1 0.8 2.6 0.3
9005-9012  61.1 0.6 15.2 0.4
9006—9008  13.5 2.2 6.3 0.8
9007—9009 3.9 1.8 39. 6 13.6
90079010 2.6 0.5 30.2 18.9
9007—9011 6.8 3.6 60.9 11.7
9007—-9029  16.4 2.3 14. 4 1.5
9007—9031  17.7 2.1 20.1 2.0
90099010 6.5 3.7 18.4 3.6
9009—9011 2.3 0.8 13.0 8.1
90289091  23.9 1.5 96.0 7.6
9029-9031  17.7 1.6 44.9 4.6

kiv = 4.9
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TABLE 7. Coordinates for Baker-Nunn stations derived
from a combination of the geometric and dynamic satellite

solutions and surface gravity only.

Station X (Mm) ’ Y (Mm)
9002 5.056126 2.716511
9003 -3.983778 3.743085
9004 5.105587 -0.555230
9113 -2.350466 -4.651977
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TABLE 8. Results of SAO-JPL stations comparison. A)\.l is the longitude
difference and Ari the difference in distance to the earth's axis of rotation

for the two solutions. AN is the weight mean longitude difference.

A

Nsao MgpL AN AN - Ay AN, TsAOTIPL T A% %ar.

Stations (nrad) (brad) (m) (m)* (m) (m)*
4751-9002 -3.5 +0.3  +1.9 7.7 +5.9 4.9
4741-9003 -2.2 -0.9 -5.2 6.8 -7.3 4.5
4742-9003 -1.2 -2.0 -10.4 9.0 -6.5 4.5
4761-9004 -4,5 +1.4 6.9 6.6 -1.2 4.5
4712-9113 -4.9 +1.7 9.2 12.4 +7.6 5.5
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TABLE 9, Coordinates of the JPL stations referred to

the SAO reference system.

Station X (Mm) Y (Mm) Z (Mm)
4751 5.085451 2.668252 -2.768728
4741 ~-3.978706 3.724858 -3.302213
4742 -4,460972 2.682424 -3.674618
4761 4,849242 -0.360290 4.114869
4712 -2.350454 -4,651975 3.665631
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TABLE 10. Power spectra of free-air gravity anomalies.

Degree Degree Variance (mgalz')
Gravimetric Satellite Combination
Solution Solution Solution

0 2.9

1 -0.2

2 5.9 7.4 7.4

3 31.0 33.3 33.0

4 18.2 19.7 20.0

5 7.3 17.5 17.8

6 20.7 14.4 15.7

7 9.2 16.4 15.5

8 7.0 8.5 6.7

9 8.7 15.1. 12.7
10 9.4 17.7 12.9
11 5.7 13.7 12.2
12 3.5 8.4 5.1
13 7.0 11.1
14 9.4 8.4
15 9.9 13.2
16 5.5 13.8
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TABLE 11. Comparison of satellite and combination solutions

2
with surface-gravity measurements (mgal”).

Solution (er-gg)®) (epggd (g2 D (g5) E{Z} E{) E{eg?

n=1, N=935, 300-n mi squares

Combination Solution 206 146 225 163 274 79 72 56
Satellite Solution 272 110 218 143 274 108 72 92
MI Solution 242 90 148 108 274 58 72 79

n=10, N = 369, 300-n mi squares

Combination Solution 135 195 230 163 297 35 19 83
Satellite Solution 250 127 212 143 297 85 19 151
M1 Solution 222 102 131 108 297 29 19 176

n &= 20, N =136, 300-n mi squares
Combination Solution

£=8 m=38 165 90 92 102 253 2 11 152
£=10 m=10 132 119 116 120 253 -3 11 123
2=11 m=11 135 126 134 126 253 8 11 116
£=12 m=1]2 134 129 138 129 253 9 11 113
£=14 m=1l4 109 156 166 146 253 10 11 87
£=16 m=1]6 75 184 186 163 253 2 11 58
n = 20, =136, 300-n mi squares
Satellite Solution
£=8 m=8§ 179 86 98 102 253 12 11 156
£ =10 m=10 145 109 110 120 253 1 11 133
£=11 m=1]l 151 115 126 126 253 11 11 127
£=<12 m=12 163 111 128 129 253 17 11 131
£=14 m=14 173 117 150 146 253 33 11 125
Total Field 177 118 161 143 253 43 11 124
n= 20, N =136, 300-n mi squares
MI Solution
£4=8 m=8 168 85 85 102 253 o] 11 157
Total Field 168 93 101 108 253 7 11 148
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TABLE 12. Summary of comparisons between surface-gravity measurements
g by Talwani and Le Pichon and gravity anomalies gg computed from the

combination solution for selected profiles.

<(gs—gT)2> GéT vés=( (gs-gT)2> 'GET
Profile (mgalz) (mgalz) (mgalz)
¢=3275 North Atlantic 84 25 59
NW-SE North Atlantic 68 25 43
NW-SE South Atlantic 222 25 197
¢$=0° Indian Ocean 80 25 55
¢ =-25° Indian Ocean 166 25 144

((rz Y =99 Ingal2 ~10 m°

gs
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TABLE 13. Summary of the comparisons between the geoid profiles obtained

from the combination solution and the astrogeoids referred to the geocentric

system. Ah is the systematic height difference between the profiles, orgh

the variance of the difference between the two profiles, tri the variance of

the astrogeoid heights, and (72 the contribution of the combination solution

S
2
to Uﬁh'
. — 2 2 2 _ 2 2
Datum Profile Ah O o, Og = Tgp ~ 0,
NAD ¢ = 35° -15 8 1.5 6.5
NAD A = 260° -16 6 1.5 .5
AGD ¢ = -28775 -12 10 1.5 .5
AGD N =136.°25 -12 12 1.5 10.5
IND N =75° -36 30 1.5 28.5
EUR A =16° -42 6 1.5 4.5

(0'2) =10.5m
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TABLE 14, Results of differences Ar and accuracy estimates T Ay between
interstation distances computed from the combination solution and from

surface triangulation after removal of any systematic scale error in the

datum.
Line Arto, Line Arto, Line Arto,
Comparisons for European Datum
8015-9004 8.0+ 9.0 9004-9080 -2.9+11.8 9066-9080 -5.6 % 9.4
8015-9065 -11.2 % 9.6 9004-9091 3.7 £13.9 9066-9091 -9.1%+ 9.9
8015-9066 -6.3+ 3.5 9004-9115 31.8 +£18.5 9066-9115 27.8+ 14.2
8015-9077 -4.7.£10.4 9065-9066 -4.3+ 9.5 9077-9080 +13.4
8015-9080 0.1 9.4 9065-9077 -1.0+£13.9 9077-9091 + 9.8
8015-9091 -7.1+ 9.3 9065-9080 -5.8 £10.9 9077-9115 +15.3
8015-9115 22.6 £ 14.8 9065-9091 -12,6 £13.8 9080-9091 -15.8 + 14.9
9004-9065 14.8 £12.9 9065-9115 36.4 +14.7 9080-9115 32.1 +£14.5
9004-9066 2.3 9.7 9066-9077 -1,2+10.3 9091-9115 2.1+17.5

Comparisons for North American Datum

1021-1042 0.7+ 7.5 1042-7036 3.4+ 11.0 7045-7075 6.1 £13.1
1021-7036 3.5+ 12.1 1042-9050 15.6 £ 14.2 7045-9050 7.1+17.2
1021-7075 -7.0x 9.7 1042-9114 1.5+ 17.3 7075-9114 -13.7%16.5
1021-9001 -5.6ft12.4 7036-7075 17.3 +£13.8 9001-9010 6.9+11.7
1034-7037 3.0+ 8.9 7036-9010 4.8 £10.3 9001-9050 11.8+£17.5
1034-7045 -1.5+ 9.9 7037-7045 1.8+ 9.5 9010-9113 3.1 +£15.1
1034-9010 -1.4 +13.0 7037-9001 1.6+ 8.9 9050-9114 -15.2 £ 20.3
1034-9113 4.9+ 12.1 7037-9113 1.6x12.1 9113-9114 14.8 £ 15.7
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TABLE 15. Differences in the coordinates as determined in the new solution
and in the 1966 Standard Earth solution. The large discrepancies occurred
at stations where no comparisons nor combinations of independent solutions

were possible in the 1966 solution.

X Y V4

Station (m) (m) (m)
9001 + 1.7 - 0.6 + 1.0
9002 - 0.7 +26.0 +32.1
9003 -26.0 -13.8 +26.5
9004- - 4.7 + 3.7 - 7.1
9005 + 4.3 +13.4 -11.3
9006 - 2.2 + 3.3 + 8.6
9007 + 5.6 - 3.4 +27.8
9008 +11.2 - 9.0 - 4,2
9009 + 8.6 - 3.6 - 4.1
9010 + 9.2 - 9.2 - 2.5
9011 +14.2 - 4.0 +30.9
9012 + 1.8 - 6.8 + 0.7
9114 + 1.4 + 8.4 - 8.0
9115 + 4.9 +14.6 ¥ 5.6
9117 + 3.1 +13.9 + 4.5
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